

DPS - 1 (Waves)

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/92

https://youtu.be/APC3Mcm8SF0

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/38

Q 1. A harmonic wave is travelling on a stretched string. At any particular instant, the smallest distance between two particles having same displacement equal to half of amplitude is 4 cm . Find smallest separation between two particles which have same values of displacement equal to amplitude
(a) 4 cm
(b) 12 cm
(c) 24 cm
(d) 8 cm

Q 2. Two corks are 10 m apart in a lake. Each goes up and down with period 5 s . And it is observed that when one is at its highest point, other one is at lowest point. The possible speed of wave is
(a) $2.5 \mathrm{~m} / \mathrm{s}$
(b) $5 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) $4 \mathrm{~m} / \mathrm{s}$

Q 3. If maximum speed of particle in a medium carrying a travelling wave is V_{0}, then find speed of particle when its displacement is half of maximum value
(a) $\frac{V_{0}}{2}$
(b) $\sqrt{3} \frac{V_{0}}{4}$
(c) $\sqrt{3} \frac{V_{0}}{2}$
(d) V_{0}

Q 4. At any instant, wave travelling along astring is shown in figure. Here point A is moving upwards. Which of following statement is true?

(a)Wave is travelling to right
(b)Displacement amplitude of wave is equal to displacement of B at this instant
(c)At this instant C also directed upward
(d)None of these
Q 5. The amplitude of wave disturbance propagating in positive x -axis is given by $y=\frac{1}{1+x^{2}}$ at $\mathrm{t}=0$ and $y=\frac{1}{1+(x-1)^{2}}$ at $\mathrm{t}=2 \mathrm{~s}$, where x and y are in metres. The shape of the disturbance does not change during the propagation. The velocity of the wave is:
(a) $1 \mathrm{~m} / \mathrm{s}$
(b) $0.5 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $4 \mathrm{~m} / \mathrm{s}$

Q 6. Which of the following functions of x and t represents a progressive wave
(a) $y=\sin (4 t-3 x)$
(b) $y=\frac{1}{4+(4 t+3 x)^{2}}$
(c) $y=\frac{1}{4 t+3 x}$
(d) all of these

Q 7. $\quad Y(x, t)=\frac{0.8}{\left[(4 x-5 t)^{2}+5\right]}$ represents a moving pulse where x and y are in metres and tin second. Then:
(a) pulse is moving in positive x -direction
(b) in 2 s it will travel a distance of 2.5 m
(c) its maximum displacement is 0.16 m
(d) it is a symmetric pulse

Q 8. A wave pulse moving in the positive x-direction along the x-axis is represented by the wavefunction $\mathrm{y}(\mathrm{x}, \mathrm{t})=\frac{2.0}{(x-3.0 t)^{2}+1}$, where x and y are in centimeters and t is in seconds. Then
(a) The speed of particle at time $t=1 \mathrm{sec}$. and $x=3 \mathrm{~cm}$ is zero.
(b) The speed of particle at time $t=1 \mathrm{sec}$. and $\mathrm{x}=3 \mathrm{~cm}$ is $2 \mathrm{~cm} / \mathrm{s}$.
(c) The speed of the pulse is $3.0 \mathrm{~cm} / \mathrm{s}$
(d) The speed of the pulse is $0.33 \mathrm{~cm} / \mathrm{s}$

Q 9. The equation of a practical travelling wave is /are
(a) A tan (wt-kx)
(b) $A \sin ^{2}(w t-k x)$
(c) $\mathrm{A} \sin (\mathrm{wt}-\mathrm{kx}) \cos (\mathrm{wt}-\mathrm{kx})$
(d) none

Q 10. Wave pulse on a string shown in figure is moving to the right without changing shape. Consider two particles at positions $x_{1}=1.5 \mathrm{~m}$ and $\mathrm{x}_{2}=2.5 \mathrm{~m}$. Their transverse velocities at the moment shown in figure are along directions:

(a) positive y-axis and positive y-axis respectively
(b) negative y-axis and positive y-axis respectively
(c) positive y-axis and negative y-axis respectively
(d) negative y -axis and negative y -axis respectively

Q 11. y-x curve at an instant for a wave travelling along x axis on a string is shown. Slope at the point A on the curve, as shown, is 53°.

(a) Transverse velocity of the particle at point A is positive if the wave is travelling along positive x axis.
(b) Transverse velocity of the particle at point A is positive if the wave is travelling along negative x axis of the particle at point A
(c) Magnitude of transverse velocity of the particle at point A is greater than wave speed.
(d) Magnitude of transverse velocity of the particle at point A is lesser than wave speed.

Comprehension (Q 12. TO Q 14.)

A pulse is started at a time $t=0$ along the $+x$ direction with speed $10 \mathrm{~m} / \mathrm{sec}$ on a long, taut string. The shape of the pulse at $t=0$ is given by function $f(x)$ with

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x}{4}+1 & \text { for } & -4<x \leq 0 \\
-x+1 & \text { for } & 0<x<1 \\
0 & & \text { otherwise }
\end{array}\right.
$$

here f and x are in centimeter
Q 12. The shape of the string is drawn at $t=0$ and the area of the pulse enclosed by the string and the x -axis is measured. It will be equal to
(a) $2 \mathrm{~cm}^{2}$
(b) $2.5 \mathrm{~cm}^{2}$
(c) $4 \mathrm{~cm}^{2}$
(d) $5 \mathrm{~cm}^{2}$

Q 13. The vertical displacement of the particle of the string at $x=7 \mathrm{~cm}$ and $t=0.018$ will be
(a) 0.75 cm
(b) 0.5 cm
(c) 0.25 cm
(d) zero

Q 14. The transverse velocity of the particle at $x=13 \mathrm{~cm}$ and $t=0.015 \mathrm{~s}$ will be
(a) $-250 \mathrm{~cm} / \mathrm{s}$
(b) $-500 \mathrm{~cm} / \mathrm{s}$
(c) $500 \mathrm{~cm} / \mathrm{s}$
(d) $-1000 \mathrm{~cm} / \mathrm{s}$

Answer Key

Q. 1 b	Q. 2 d	Q. 3 c	Q. 4 b	Q. 5 b
Q. 6 a, b	Q. $7 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$	Q. 8 a,c	Q. 9 b,c	Q. 10 b
Q. 11 b, c	Q. 12 b	Q. 13 c	Q. 14 a	

