

DPP – 1 (Waves)					
Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/92				
Video Solution on YouTube:-	https://youtu.be/APC3Mcm8SF0				
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/38				
 Q 1. A harmonic wave is travelling on a stretched string. At any particular instant, the smallest distance between two particles having same displacement equal to half of amplitude is 4 cm. Find smallest separation between two particles which have same values of displacement equal to amplitude (a) 4 cm (b)12 cm (c) 24 cm (d)8 cm Q 2. Two corks are 10 m apart in a lake. Each goes up and down with period 5 s. And it is observed that when one is at its highest point, other one is at lowest point. The possible speed of wave is (a) 2.5 m/s (b)5 m/s (c) 40 m/s (d)4 m/s 					
Q 3. If maximum speed of speed of particle wh (a) $\frac{V_0}{2}$	speed of particle when its displacement is half of maximum value				
	e travelling along a string is shown in figure. Here point A is which of following statement is true?				

(a)Wave is travelling to right
(b)Displacement amplitude of wave is equal to displacement of B at this instant
(c)At this instant C also directed upward
(d)None of these

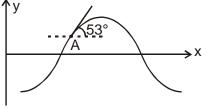
- Q 5. The amplitude of wave disturbance propagating in positive x-axis is given by $y = \frac{1}{1+x^2}$ at t = 0 and $y = \frac{1}{1+(x-1)^2}$ at t = 2s, where x and y are in metres. The shape of the disturbance does not change during the propagation. The velocity of the wave is: (a) 1 m/s
 (b) 0.5 m/s
 (c) 2 m/s
 (d) 4 m/s
- Q 6. Which of the following functions of x and t represents a progressive wave (a) $y = \sin (4t - 3x)$ (b) $y = \frac{1}{4+(4t+3x)^2}$ (c) $y = \frac{1}{4t+3x}$ (d) all of these

- Q 7. $Y(x,t) = \frac{0.8}{[(4x-5t)^2+5]}$ represents a moving pulse where x and y are in metres and tin second. Then:
 - (a) pulse is moving in positive x-direction
 - (b) in 2 s it will travel a distance of 2.5 m
 - (c) its maximum displacement is 0.16 m
 - (d) it is a symmetric pulse
- Q 8. A wave pulse moving in the positive x-direction along the x-axis is represented by the wavefunction $y(x, t) = \frac{2.0}{(x-3.0t)^2+1}$, where x and y are in centimeters and t is in seconds. Then
 - (a) The speed of particle at time t = 1 sec. and x = 3cm is zero.
 - (b) The speed of particle at time t = 1 sec. and x = 3 cm is 2 cm/s.
 - (c) The speed of the pulse is 3.0 cm/s
 - (d) The speed of the pulse is 0.33 cm/s

Q 9. The equation of a practical travelling wave is /are (a) A tan (wt - kx) (b) A

- (c) A sin(wt kx) cos(wt kx)
- (b) A \sin^2 (wt kx) (d) none

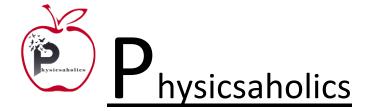
►x(m)


Q 10. Wave pulse on a string shown in figure is moving to the right without changing shape. Consider two particles at positions $x_1 = 1.5$ m and $x_2 = 2.5$ m. Their transverse velocities at the moment shown in figure are along directions:

5

6

(a) positive y-axis and positive y-axis respectively


- (b) negative y-axis and positive y-axis respectively
- (c) positive y-axis and negative y-axis respectively
- (d) negative y-axis and negative y-axis respectively
- Q 11. y-x curve at an instant for a wave travelling along x axis on a string is shown. Slope at the point A on the curve, as shown, is 53°.

(a) Transverse velocity of the particle at point A is positive if the wave is travelling along positive x axis.

(b) Transverse velocity of the particle at point A is positive if the wave is travelling along negative x axis of the particle at point A

(c) Magnitude of transverse velocity of the particle at point A is greater than wave speed.

(d) Magnitude of transverse velocity of the particle at point A is lesser than wave speed.

Comprehension (Q 12. TO Q 14.)

A pulse is started at a time t = 0 along the +x direction with speed 10 m/sec on a long, taut string. The shape of the pulse at t = 0 is given by function f(x) with

$$f(x) = \begin{cases} \frac{x}{4} + 1 & \text{for } -4 < x \le 0\\ -x + 1 & \text{for } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

here f and x are in centimeter

- Q 12. The shape of the string is drawn at t = 0 and the area of the pulse enclosed by the string and the x-axis is measured. It will be equal to (a) 2 cm^2 (b) 2.5 cm^2 (d) $5 \, \text{cm}^2$ (c) 4 cm^2
- Q 13. The vertical displacement of the particle of the string at x = 7 cm and t = 0.01 s will be (c) 0.25 cm (b) 0.5 cm (d) zero
 - (a) 0.75 cm

The transverse velocity of the particle at x = 13 cm and t = 0.015 s will be Q 14. (a) -250 cm/s (b) -500 cm/s(c) 500 cm/s (d) -1000 cm/s

Answer Key

Q.1 b	Q.2 d	Q.3 c	Q.4 b	Q.5 b
Q.6 a, b	Q.7 a, b, c, d	Q.8 a,c	Q.9 b,c	Q.10 b
Q.11 b, c	Q.12 b	Q.13 c	Q.14 a	